Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
N Biotechnol ; 76: 13-22, 2023 Sep 25.
Article in English | MEDLINE | ID: covidwho-2292456

ABSTRACT

This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced in microgram quantities with consistent purity and potency in less than 24 h. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo. The proposed production process is efficient and can be readily scaled up and deployed wherever a viral pathogen might emerge. The current emergence of viral variants of SARS-CoV-2 has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell-Free System , Pandemics/prevention & control , SARS-CoV-2
2.
RNA Biol ; 18(sup2): 804-817, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1522048

ABSTRACT

Nsp1 of SARS-CoV-2 regulates the translation of host and viral mRNAs in cells. Nsp1 inhibits host translation initiation by occluding the entry channel of the 40S ribosome subunit. The structural study of the Nsp1-ribosomal complexes reported post-termination 80S complex containing Nsp1, eRF1 and ABCE1. Considering the presence of Nsp1 in the post-termination 80S ribosomal complex, we hypothesized that Nsp1 may be involved in translation termination. Using a cell-free translation system and reconstituted in vitro translation system, we show that Nsp1 stimulates peptide release and formation of termination complexes. Detailed analysis of Nsp1 activity during translation termination stages reveals that Nsp1 facilitates stop codon recognition. We demonstrate that Nsp1 stimulation targets eRF1 and does not affect eRF3. Moreover, Nsp1 increases amount of the termination complexes at all three stop codons. The activity of Nsp1 in translation termination is provided by its N-terminal domain and the minimal required part of eRF1 is NM domain. We assume that the biological meaning of Nsp1 activity in translation termination is binding with the 80S ribosomes translating host mRNAs and remove them from the pool of the active ribosomes.


Subject(s)
Protein Biosynthesis , SARS-CoV-2 , Viral Nonstructural Proteins/physiology , Animals , Cell-Free System , Codon, Terminator/metabolism , GTP Phosphohydrolases/metabolism , HeLa Cells , Humans , Mutation , Peptide Chain Termination, Translational , Peptide Termination Factors/chemistry , Peptide Termination Factors/metabolism , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Domains , RNA, Messenger/metabolism , Rabbits , Ribosomes/metabolism
3.
Sci Rep ; 11(1): 20595, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1475487

ABSTRACT

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Light , SARS-CoV-2 , Trachea/radiation effects , Virus Replication/radiation effects , Adult , Animals , Antiviral Agents/pharmacology , Bronchi , Calibration , Cell-Free System , Chlorocebus aethiops , Epithelium/pathology , Female , Humans , Respiratory Mucosa/radiation effects , Trachea/virology , Vero Cells
4.
Biochem Cell Biol ; 99(6): 766-771, 2021 12.
Article in English | MEDLINE | ID: covidwho-1440839

ABSTRACT

Cell-free synthetic biology is a rapidly developing biotechnology with the potential to solve the world's biggest problems; however, this promise also has implications for global biosecurity and biosafety. Given the current situation of COVID-19 and its economic impact, capitalizing on the potential of cell-free synthetic biology from an economic, biosafety, and biosecurity perspective contributes to our preparedness for the next pandemic, and urges the development of appropriate policies and regulations, together with the necessary mitigation technologies. Proactive involvement from scientists is necessary to avoid misconceptions and assist in the policymaking process.


Subject(s)
COVID-19/therapy , Synthetic Biology/economics , Synthetic Biology/legislation & jurisprudence , Biocompatible Materials , Biomedical Technology , Biosecurity , Biotechnology , Cell-Free System , Diffusion of Innovation , Health Policy , Humans , Safety , Synthetic Biology/trends
5.
Biotechniques ; 70(2): 126-133, 2021 02.
Article in English | MEDLINE | ID: covidwho-1369584

ABSTRACT

Biopharmaceutical products are of great importance in the treatment or prevention of many diseases and represent a growing share of the global pharmaceutical market. The usual technology for protein synthesis (cell-based expression) faces certain obstacles, especially with 'difficult-to-express' proteins. Cell-free protein synthesis (CFPS) can overcome the main bottlenecks of cell-based expression. This review aims to present recent advances in the production process of biologic products by CFPS. First, key aspects of CFPS systems are summarized. A description of several biologic products that have been successfully produced using the CFPS system is provided. Finally, the CFPS system's ability to scale up and scale down, its main limitations and its application for biologics production are discussed.


Subject(s)
Biological Products , Cell-Free System , Protein Biosynthesis , Proteins
6.
Biosens Bioelectron ; 182: 113173, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1152282

ABSTRACT

Respiratory syncytial virus (RSV) infection is the most common clinical infectious disease threatening the safety of human life. Herein, we provided a sensitive and specific method for detection and differentiation of RSV subgroups A (RSVA) and B (RSVB) with colorimetric toehold switch sensors in a paper-based cell-free system. In this method, we applied the toehold switch, an RNA-based riboswitch, to regulate the translation level of ß-galactosidase (lacZ) gene. In the presence of target trigger RNA, the toehold switch sensor was activated and the expressed LacZ hydrolyzed chromogenic substrates to produce a colorimetric result that can be observed directly with the naked eye in a cell-free system. In addition, nucleic acid sequence-based amplification (NASBA) was used to improve the sensitivity by amplifying target trigger RNAs. Under optimal conditions, our method produced a visible result for the detection of RSVA and RSVB with the detection limit of 52 aM and 91 aM, respectively. The cross-reaction of this method was validated with other closely related respiratory viruses, including human coronavirus HKU1 (HCoV-HKU1), and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Furthermore, we used the paper-based carrier material that allows stable storage of our detection elements and rapid detection outside laboratory. In conclusion, this method can sensitively and specifically differentiate RSVA and RSVB and generate a visible colorimetric result without specialized operators and sophisticated equipment. Based on these advantages above, this method serves as a simple and portable detector in resource-poor areas and point-of-care testing (POCT) scenarios.


Subject(s)
Biosensing Techniques , Cell-Free System , Colorimetry/methods , Respiratory Syncytial Virus, Human/isolation & purification , Betacoronavirus/isolation & purification , Humans , RNA, Viral , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL